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Turbulence is a ubiquitous phenomenon that is not fully under-
stood. It is known that the ¯ow of a simple, newtonian ¯uid is
likely to be turbulent when the Reynolds number is large (typi-
cally when the velocity is high, the viscosity is low and the size of
the tank is large1,2). In contrast, viscoelastic ¯uids3 such as
solutions of ¯exible long-chain polymers have nonlinear mech-
anical properties and therefore may be expected to behave
differently. Here we observe experimentally that the ¯ow of a
suf®ciently elastic polymer solution can become irregular even at
low velocity, high viscosity and in a small tank. The ¯uid motion is
excited in a broad range of spatial and temporal scales, and we
observe an increase in the ¯ow resistance by a factor of about
twenty. Although the Reynolds number may be arbitrarily low, the
observed ¯ow has all the main features of developed turbulence. A

comparable state of turbulent ¯ow for a newtonian ¯uid in a pipe
would have a Reynolds number as high as 105 (refs 1, 2). The low
Reynolds number or `elastic' turbulence that we observe is
accompanied by signi®cant stretching of the polymer molecules,
resulting in an increase in the elastic stresses of up to two orders of
magnitude.

Motion of simple, low molecular weight, newtonian ¯uids is
governed by the Navier±Stokes equation1,2. This equation has a
nonlinear term, which is due to ¯uid inertia. The ratio between the
nonlinearity and viscous dissipation is given by the Reynolds
number, Re � VL=n, where V is velocity, L is characteristic size
and n is kinematic viscosity of the ¯uid. When Re is high, nonlinear
effects are strong and the ¯ow is likely to be turbulent; therefore,
turbulence is a paradigm for a strongly nonlinear phenomenon1,2.

Solutions of ¯exible high molecular weight polymers differ from
newtonian ¯uids in many aspects3. The most notable elastic prop-
erty of the polymer solutions is that stress does not immediately
become zero when the ¯uid motion stops, but rather decays with
some characteristic time, l, which can reach seconds and even
minutes. The equation of motion for dilute polymer solutions
differs from the Navier±Stokes equation by an additional linear
term arising from the elastic stress, t (ref. 3). Because the elastic
stress is caused by stretching of the polymer coils, it depends on
history of motion and deformation of ¯uid elements along their
¯ow trajectories. This implies a nonlinear relationship between t
and the rate of deformation in a ¯ow3. The nonlinear mechanical
properties of polymer solutions are well manifested in their large
extensional viscosity at high rates of extension4 and in the Weissen-
berg effect3,5. The degree of nonlinearity in the mechanical proper-
ties is expressed by the Weissenberg number, Wi � Vl=L, which is a
product of characteristic rate of deformation and the relaxation
time, l.

We considered whether the nonlinearity of mechanical properties
of a ¯uid can give rise to turbulent ¯ow when the equation of
motion is linear. For a polymer solution this corresponds to a state
in which the Weissenberg number is large, while the Reynolds
number is small. This situation can be realized if the parameter of

Figure 1 The experimental set-up. A stationary cylindrical cup with a plain bottom (the

lower plate) is concentric with the rotating upper plate, which is attached to the shaft of a

commercial rheometer. The radii of the upper and the lower plates are R � 38 mm and

R 2 � 43:6 mm, respectively. The liquid is ®lled until a level d of 10 mm unless otherwise

stated. The upper plate just touches the surface of the liquid. A special cover is used to

minimize evaporation of the liquid. We used a solution of 65% saccharose and 1% NaCl in

water, viscosity hs � 0:324 Pa s, as a solvent for the polymer. We added polyacrylamide

(Mw � 18;000;000; Polysciences) at a concentration of 80 p.p.m. by weight. The

solution viscosity was h � 0:424 Pa s at gÇ � 1 s 2 1. The relaxation time, l, estimated

from the phase shift between the stress and the shear rate in oscillatory tests, was 3.4 s.

The temperature is stabilized at 12 8C by circulating water under the steel lower plate. The

walls of the cup are transparent which allows Doppler velocimeter measurements by

collecting light scattered from the crossing point of two horizontal laser beams. In

experiments where the ¯ow has to be viewed from below, the lower plate is made from

plexiglass and a mirror tilted by 458 is placed under the lower plate. The ¯ow patterns are

then captured by a CCD camera at the side and the temperature is stabilized by circulating

air in a closed box.
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elasticity, Wi=Re � ln=L2, is large enough. An important observa-
tion concerning the in¯uence of the nonlinear mechanical proper-
ties on ¯ow was made about a decade ago, when purely elastic
instability was experimentally identi®ed in curvilinear shear
¯ows6,7. This instability occurs at moderate Wi and vanishingly
small Re and is driven by the elastic stresses7,9. As a result of the
instability, secondary and in general oscillatory vortex ¯ows
develop, and ¯ow resistance increases6±10. Flow instabilities in elastic
liquids are reviewed in refs 11, 12.

There is no commonly accepted unique de®nition of turbulent
¯ow2, and it is usually identi®ed by its main features1,2. Turbulence
implies ¯uid motion in a broad range of spatial and temporal scales,
so that many degrees of freedom are excited in the system. A
practically important characteristic of turbulent ¯ows is a large
increase in the ¯ow resistance compared with an imaginary laminar
¯ow with the same Re. We show how these main features of
turbulence appear in a ¯ow of a highly elastic polymer solution at
low Reynolds numbers.

For our experiments we chose a swirling ¯ow between two
parallel disks (Fig. 1), and a dilute solution of high molecular
weight polyacrylamide in a viscous sugar syrup as the working ¯uid.
The curvature ratio was made quite high, d=R � 0:263, to provide

destabilization of the primary shear ¯ow and development of the
secondary vortical ¯uid motion at lower shear rates7,10. (The ¯ow
between two plates with small d/R has been studied previously in the
context of the purely elastic instability10.) We mounted the whole
¯ow set-up on top of a commercial viscometer (AR-1000 of TA-
instruments) to measure precisely the angular velocity, q, of the
rotating upper plate and the torque applied to it. In this way we were
able to estimate the average shear stress, j, in the polymer solution
and to compare it with the stress in the laminar ¯ow, jlam, with the
same applied shear rate. In newtonian ¯uids the ratio j/jlam

generally grows with Re as the ¯ow becomes increasingly irregular,
and the magnitude of j/jlam can be considered as a measure of
strength of turbulence and turbulent resistance. In our set-up j
becomes 30% higher than jlam at Re � 70, which can be regarded as
a point when inertial effects become signi®cant.

The dependence of j/jlam on the shear rate, gÇ � qR=d, for ¯ow of
the polymer solution in the experimental system is shown in Fig. 2
(®rst curve). At a value of gÇ of about 1 s-1 (corresponding to
Wi [ lgÇ � 3:5), a sharp transition occurs that appears as a sig-
ni®cant increase in the apparent viscosity. The Reynolds number at
the transition point is about 0.3, which means that the inertial effects
are quite negligible. The transition has pronounced hysteresis,

Figure 2 Stress ratio versus shear rate. We plot the ratio of the average stress, j,

measured in the ¯ow, to the stress, jlam, in the laminar ¯ow with the same boundary

conditions as a function of the shear rate, gÇ . The curves 1 and 2 are for the polymer

solution ¯ow with d � 10 mm and 20 mm, respectively. The shear rate was gradually

varied in time, very slowly (by about 10% h-1) in the transition region, and faster below and

above it. Thin black lines represent increasing gÇ ; thick grey lines represent decreasing gÇ .

Curve 3 represents the pure solvent. Mechanical degradation of the polymers was quite

small at shear rates below 1.5 s-1 and 1 s-1 for d � 10 mm and 20 mm, respectively. The

dependences of j/jlam on gÇ in those regions were therefore reproducible in consecutive

runs within about 1%. Degradation effects became appreciable at higher shear rates, and

elasticity typically decreased by up to 10% as a result of the runs shown by the curves 1

and 2.

Figure 4 Average Fourier spectra of the brightness pro®les. These are taken along the

diameter (thin black line) and along the circumference at a radius of 2d (thick grey line).

We averaged over a long series of ¯ow pattern snapshots taken in consecutive moments

of time. The wavelength is measured in units of d, so that the wavenumber, k, of unity

corresponds to a length of 2pd. The spectrum taken along the diameter apparently differs

from the azimuthal spectrum by a series of broad peaks. This may be a manifestation of

the fact that the ¯ow is not completely structureless and homogeneous along the radial

direction (see Fig. 3). The visualization method that we used (Fig. 3) does not provide

direct information about the ¯uid velocity; therefore, the exact value of the exponent in the

power law ®t, A < K -1, has no special meaning.

Figure 3 Two snapshots of the ¯ow at Wi � 13, Re � 0:7. The ¯ow under the black

upper plate is visualized by seeding the ¯uid with light re¯ecting ¯akes (1% of the

Kalliroscope liquid). The ¯uid is illuminated by ambient light. Although the pattern is quite

irregular, structures that appear tend to have spiral-like forms. The dark spot in the middle

corresponds to the centre of a big persistent thoroidal vortex that has dimensions of the

whole set-up.

Figure 5 Power spectra of velocity ¯uctuations. The data are obtained at different rates, gÇ

in the standard set-up. The ¯uid velocity was measured by a laser Doppler velocimeter in

the centre of the ¯ow. Curves 1±5 correspond to gÇ � 1:25, 1.85, 2.7, 4 and 5.9 s-1,

respectively (all above the transition point gÇ . 1, Fig. 2). The power, P, of ¯uctuations is

®tted by a power law, P < f 2 3:5, for gÇ � 4 s 2 1 over about a decade in frequencies, f.
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which is typical for the purely elastic ¯ow instability9. The ratio
j/jlam keeps growing with the shear rate, and at the highest gÇ
that has been reached the ¯ow resistance is about 12 times larger
than is found in laminar ¯ow. In the same range of shear rates, ¯ow
of the pure solvent is completely laminar and the ratio j/jlam is unity
within the resolution of the viscometer (about 1%). To make sure
that the observed ¯ow phenomena were indeed caused by the
solution elasticity, we measured j for a few solutions that had
the same polymer concentration but different relaxation times, l.
The curves of j/jlam coincided, when plotted against Wi, whereas
the Reynolds number turned out to be completely irrelevant (see
also ref. 9). The growth of the resistance in the polymer solution
¯ow becomes even larger when the size of the gap is increased (Fig. 2,
second curve). At this point the ratio j/jlam reaches a value of 19.
Such growth of the ¯ow resistance is found for newtonian ¯uids in
the same ¯ow geometry at Re of about 2 3 104. For ¯ow in a circular
pipe this value of j/jlam is reached at Re . 105, which is usually
considered as a region of rather developed turbulence1.

Two representative snapshots of the polymer solution ¯ow above
the transition (at gÇ � 4 s 2 1) are shown in Fig. 3. The ¯ow patterns
are very irregular and structures of different sizes appear. This visual
impression is con®rmed by a more careful analysis. Average Fourier
spectra of the brightness pro®les along the diameter and along the
circumference exhibit power law decay over a decade in the
wavenumber domain (Fig. 4).

Characteristic time spectra of velocity ¯uctuations at different
shear rates are shown in Fig. 5. Flow velocity was measured in the
horizontal plane in the centre of the set-up, where its average value is
zero. As the shear rate is raised the power of ¯uctuations increases
and characteristic frequencies become higher, but the general form
of the spectra remains very much the same. In particular, just as for
the spatial spectra in Fig. 4, there is a region of a power law decay,
which spans about a decade in frequencies. This power law depen-
dence in the broad ranges of spatial and temporal frequencies
actually means that the ¯uid motion is excited at all those spatial
and temporal scales. Spectra of radial and azimuthal velocities taken
at different points with non-zero average ¯ow had the same general
appearance and close values of exponents in the power law decay
range.

In summary, we conclude that the ¯ow of the elastic polymer
solution at suf®ciently high Wi has all the main features of
developed turbulence. By the strength of the turbulent resistance,
and by the span of scales in space and time, where the ¯uid motion is
excited, the observed ¯ow can be compared with turbulence in a
newtonian ¯uid in a pipe at Re of about 105. This apparently
turbulent ¯ow arises solely because of the nonlinear mechanical
properties of the elastic polymer solution. We therefore call the
phenomenon elastic turbulence, in contrast to the usual inertial
turbulence which is observed in newtonian ¯uids at high Re. (The
name `elastic turbulence' has been used before for designation of
apparently disordered ¯ows in polymeric liquids13. No attempt has
been ever made, however, to characterize those ¯ows quantitatively.)

Elastic turbulence has many features that are in sharp contra-
diction to the concepts of newtonian ¯uid mechanics. On the one
hand, velocity required for excitation of inertial turbulence in a
newtonian ¯uid is proportional to the ¯uid viscosity. On the other
hand, the polymer relaxation time, l, usually grows proportionally
to the viscosity. Because at constant d/R the transition to elastic
turbulence occurs at a certain value of the Weissenberg number,
Wi � Vl=L, one can excite turbulence at lower velocities by choos-
ing more viscous polymer solutions. Indeed, using a solution of
polymers in a very viscous sugar syrup, we observed transition to the
elastic turbulence at a rotation rate of 0.05 s-1 (corresponding to
Re . 10 2 3). Further, in an elastic polymer solution, the scale of
time, l, does not depend on the size of the system; therefore as long
as the ratio d/R is preserved, transition to turbulence should occur at
the same q, and the dependence of j/jlam on gÇ should not change

with the size of the system. We repeated the measurements of j in a
small set-up having all the dimensions reduced by a factor of 4 as
compared with the standard system. The dependence of j/jlam on gÇ
was found to be the same (data not shown) as in Fig. 2, whereas the
characteristic velocities and the Reynolds numbers were lower by
factors of 4 and 16, respectively. We therefore believe that by using
polymer solutions with suf®ciently high elasticity we can excite
turbulent motion at arbitrary low velocities and in arbitrary small
tanks. (The size of the tank still has to be large compared with the
size of the polymer coils.)

An important question about the elastic turbulence is where the
turbulent resistance comes from. In the inertial turbulence the
origin of the large resistance is the Reynolds stress, which is
connected with high kinetic energy of the turbulent motion and
takes a major part in the momentum transfer in the ¯ow. Elastic
turbulence occurs at low Reynolds numbers. From our velocity
measurements in the standard set-up, contribution of the Reynolds
stress to the ¯ow resistance could be estimated as being less than
0.5%. The contribution of the viscous shear stress of the newtonian
solvent, averaged across the ¯uid layer, is always the same as in
laminar ¯ow and cannot change. Thus, the whole increase in the
¯ow resistance should be due to the elastic stress. The data shown in
Fig. 2 (second curve) imply that the polymer contribution to the
stress increases by a factor of up to 65, as compared with laminar
¯ow with the same average shear rate. This suggestion agrees very
well with our measurements of relaxation of the shear stress after the
¯uid motion is stopped. The elastic part, t, of the whole stress is
identi®ed by its slow relaxation with a characteristic time of the
order l. In elastic turbulence this slowly relaxing part can become
two orders of magnitude larger than in laminar ¯ow with the same
shear rate. This major growth of the elastic stress should be
connected with vast extension of the polymer molecules in the
turbulent ¯ow.

Thus, elastic turbulence apparently develops as follows. The
polymer molecules are stretched in the primary shear ¯ow, which
makes it unstable and causes irregular secondary ¯ow. This ¯ow acts
back on the polymer molecules, stretching them further and
becoming increasingly turbulent, until a kind of saturated dynamic
state is reached. The density of the elastic energy of the stretched
polymers can be estimated as Wi t/2, and should therefore increase
in the elastic turbulent ¯ow by about the same factor as the elastic
stress, t, while the kinetic energy remains small. M
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